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PRE FACE

Since the promulgation of the General Theory of Relativity,

science has come to look upon gravitational phenomena as a direct

consequence of the curvature of a four-dimensional space-time

continuum arising from a momentum-energy distribution. While

this viewpoint enables one to predict observed results with greater

accuracy and is more satisfying in certain basic aspects than the

Newtonian formulation, it requires solutions of a comparatively

complicated system of nonlinear partial differential equations of

the second order. In an attempt to shed some light on the properties

of the solution manifold of the general relativity field equations with

arbitrary momentum-energy tensors, we presented analyses of

certain aspects of the general second-order discontinuity problem.

The underlying idea behind this approach is that the analysis of

discontinuity properties are usually considerably simpler than the

analysis of the complete field equations--particularly if the field

equations are nonlinear. Following the ideas delineated in our

previous work concerning the evolutionary properties of the second-

order problem, we present in this Memorandum a general dynamical

theory of discontinuity surfaces and the associated jump strengths of

both physical and geometrical quantities. The results reported here

form the basis for a general analysis of galactic morphology which

will be presented in succeeding communications.



SUMMARY

Let E be a time-like hypersurface in an Einstein-Riemann

space E which is a support hypersurface for jumps in the mo-

mentum--energy tensor and in at least one second coordinate deriva-

tive of the metric tensor h AB(x). A system of necessary conditions

is obtained for the existence of solutions of the Einstein field equations

in the presence of jumps on E. These conditions are shown to be

expressible in terms of surface tensors and surface tensorial dif-

ferential systems. In particular, a system of algebraic surface

tensor equations are obtained for the jump strengths of the metric

tensor and a system of first order covariant surface differential

equations are obtained for the jump strengths of the momentum-

energy tensor. These equations involve only the surface components

of the jump strengths and the components of the first fundamental

form. An additional algebraic condition is obtained which involves

the surface jump strengths of the momentum-energy tensor and the

second fundamental form. If it is assumed that one knows the mo-

mentum-energy tensor on one side of E, explicit formulae are

obtained for the continuation of the momentum-energy tensor across

the discontinuity hypersurface E by integrating the differential

system governing by the jump strengths of the momentum-energy

tensor. This integration is effected by means of two principles
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which state a fundamental relation between geometry and physics

and the fact that physical systems are governed by second order

differential relations. The case in which the hypersurface E forms

a static three-dimensional hyperbolic-normal metric space E is

then examined. Results are thus obtained which will be of signifi-

cance in the application of the discontinuity method to problems in

relativistic cosmology.
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1. INTRODUCTION

Since the promulgation of the General Theory of Relativity,

science has come to look upon gravitational phenomena as a direct

consequence of the curvature of a four-dimensional space-time

continuum arising from a momentum-energy distribution. While

this viewpoint enables one to predict observed results with greater

accuracy and is more satisfying in certain basic aspects than the

Newtonian formulation, it requires solutions of a comparatively

complicated system of simultaneous nonlinear partial differential

equations of the second order. Some success has been achieved in

obtaining solutions, but the methods employed rely heavily on a

large number of assumptions, and usually involve very restricted

forms of the momentum-energy tensor or ignore this tensor alto-

gether. With the exception of existence theorems for the initial-

value problem, very few results have been obtained with respect to
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the properties of the solution manifold with arbitrary momentum-

energy tensors.

In an attempt to shed some light on the properties of the so-

lution manifold of the general relativity field equations with arbitrary

momentum-energy tensors, we presented analyses of certain aspects

of the general second-order discontinuity problem [ 1 through 6].

The underlying idea behind this approach is that the analysis of dis-

continuity properties are usually considerably simpler than the

analysis of the complete field equations-particularly if the field

equations are nonlinear. Such analyses also provide the basis upon

which significant information concerning the detailed physical pro-

cess can be gleaned; see, for example [7], [8] and [9]. Following the

ideas delineated in our previous papers concerning the evolutionary

properties of the second-order problem, we have obtained a general

dynamical theory of discontinuity surfaces and the associated jump

strengths of both physical and geometrical quantities. These results

are presented here and will form the basis for a general analysis of

galactic structures.

2. PRELIMINARY CONSIDERATIONS

In this section we collect certain required results from the

differential geometry of hypersurfaces. We state these without proof

and refer the reader to the standard texts or t, the exposition given

in [6].
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Consider a metric space of the type used in general relativity

theory; that is, an Einstein-Riemann space E whose metric

structure is defined by the quadratic differential form

(2.1) ds 2 = hAB dxA dx B , (A, B = 0, if 2, 3),

having signature -2 and coefficients hAB which are functions of
AA

the coordinates x of the space E. As indicated in (2. 1), capital

Latin indices will have the range 0, 1, 2, 3 and will be summed

over this range in accordance with the summation convention. Let

E denote a regular hypersurface in E; that is, F, can be defined

parametrically by equations

(2.2) x= f A(u0, u , u),

where the fA(ua) are continuously differentiable functions of the

parametric or surface coordinates u such that the functional

matrix ((3fA /8u)) has rank 3 for all values of the u's under

consideration. Here and throughout this paper lower case Greek

indices will be associated with surface quantities and obey the

summation convention with the range 0, 1, 2.

Over such a hypersurface E one can define a normal vector

with covariant components N A by the equations

A A def 8fA(u)/8ua).(2.3) xa NA = 0 (xa



We shall assume throughout this paper that E is a time-like

hypersurface, and hence its normal vector is space like. The

normal vector to L may thus be normalized by the requirement

A(2.4) N NA  =-

A

The quantities xA for a = 0, 1, 2 are the components of three

independent contravariant vectors in E at any point of E and can

also be interpreted, for A fixed, as the components of four co-

variant vectors on the surface E.

The coefficients a of the first fundamental form of the

surface E are given, as functions of the surface coordinates uc,

by the equations

A B
(2.5) a h = hABX xB.

As defined by (2. 5), the quantities a & transform according to the

tensor law when the surface coordinates undergo their admissible

transformations. The surface tensor determined by the a a is

called the metric tensor of the surface El. It can be shown that the

first fundamental form of E is nonsingular and that it has signature

-1. Also, denoting the inverse of a by a a , it can be shown

that

(2.6) a xAxB = hAB NA NB
a 2 =h +
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Before proceeding further, it appears advisable to state the

exact assumptions of continuity and differentiability which will be

involved in this paper. For this purpose let us denote by J the

region (open set) consisting of some neighborhood of E which

contains E in its interior. Denote by J1 the subregion of J lying

on one side of E and by J 2 the subregion lying on the other side.

Let us, furthermore, denote by D1 the domain J1 + L (that is,

the point set consisting of the subregion J1 and the points of the

surface E as boundary points), the domain J2 + F being denoted

by D . The following assumptions are now made.

A The functions f A(u a) in equations (2. 2) defining the

3
hypersurface E are of class C

A2: The metric components hAB(x K) are functions of class

C 1 in the region J and of class C 3 in the domains D 1 and D2 .

It follows from these assumptions that the Christoffel symbols

AABC of the Einstein-Riemann space E are continuous across E.

Also, from assumption A1 and equations (2.6) it is seen that the

metric components a p W(u) are continuous on E and have con-

tinuous first partial derivatives; hence the Christoffel symbols

a determined by the quantities a are continuous functions of

the surface coordinates. One can thus construct the first surface

covariant derivatives of differentiable tensorial quantities defined on

E. Thus, in particular, we have
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A A A + B A Cx C O x , o - x Y A CI + x N C xf3 a ~ f Xc 1 C X1

A A B  A C
; N +N A BC x

for the components of the covariant derivatives of the mixed surface
A

and space vectors defined on E by x and the unit normal vector

N respectively. Use of the semicolon to denote covariant differ-

entiation will be continued throughout this paper; correspondingly we

shall use the comma to denote partial differentiation with respect to
Aa

the space coordinates x or the surface coordinates u as in-

dicated by the indices.

Denoting the coefficients of the second fundamental form on

E by b ap we have

A
b =-x N

aj3 a;1 A*

Hence the b are continuous functions of the surface coordinates

and are moreover symmetric in the indices a and 13 since the
A

quantities x are symmetric in these indices. The functions

bap occur in the following important relations

A N

(2.7) x A b N A

A 9V A(2.8) N = b aa xA;, f, v "
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3. JUMP CONDITIONS

So far the hypersurface 1; has been any regular, time-like

hypersurface in a four-dimensional Einstein-Riemann space E. We

now restrict our attention to those hypersurfaces in E which carry

basic field-theoretic information in the sense that they are the support

hypersurfaces for the field discontinuities. In view of our previous

assumptions, this is accomplished by the following requirement.

A3: There is a discontinuity in at least one of the second

derivatives of the functions hAB(xK) at points of the hypersurface E.

The symbol IWA * "" I will be used to denote the jumps in the

quantities WA. across E; that is, the differences in the limits
B...

of WA... as points in E are approached from J1 and J

respectively. By assumption A2 , we have

(3.1) h ABI = 0, IhABP CI = 0P

while A3 states that Ih AB,CDI 0 for some choice of the indices.

In fact, it can be shown [ 6] that there exist functions XAB(u ) of

the coordinates of. the hypersurface L such that

(3.2) lhAB, CDI = >AB NC ND .

In view of (3. 1) and the fact that
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(3.3) XAB - IhAB, CDI NC ND,

the X's may be viewed as the jump strengths of the h-field.

We now impose the requirements that the structure of the space

E is determined by the Einstein field equations

1
(3.4) BAB- B hAB= K TAB.

Here BAB are the components of the Ricci tensor of E, B is the
ABB h A

scalar curvature B AB h A T are the components of the momentum-

energy tensor, and K is the so called gravitational constant. Let

us denote the jump strengths of the momentum-energy tensor across

L by SAB; that is

(3.5) SAB - ITABI,

where the S's are functions of the surface coordinates u . It is

then easily shown (see [ 2 ] ) that a necessary condition for the

existence of solutions to the Einstein field equations under assumptions

Al, A2, A3 is that the discontinuity strengths satisfy the equations

(3.6) j I! -- I BI h K S

IBAB 2 AB AB*

The system (3. 6) also may be viewed as conditions for the con-

tinuation of solutions to the Einstein equations across surfaces of

discontinuity of the momentum-energy tensor (see [ 4]).
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Denoting the components of the complete curvature tensor of

E by BA BCD' we have

A A A
BABCD A BCD A BD, C +

where the asterist denotes terms which are quadratic in the

Christoffel symbols. When use is made of these relations and

equations (3. 1) and (3. 2) we obtain

(3.7) 21BABCD I = hAM(XMC NB ND + XBD NM NC -XBC NMND

-% MD N B NC),

from which the left-hand side of (3.6) may be evaluated. Introducing

the quantities

(3.8) *A AB N B  6 A P

the explicit evaluation of (3. 6) is found to be given by

(3.9) XAB + 2 4 (A NB) - 0 NA N B

-( + %CD hAB 2 K S AB

If we multiply both sides of (3. 9) by N B , sum on the repeated

index B, and use equations (3.8), the left members of the resulting

equations vanish identically. We are thus left with the simple set of

relations



-10-

B
(3.10) SAB N =0.

It is also evident that the functions * A are undetermined by the

equations (3. 8), (3.9) and hence may be taken as arbitrary functions

of the coordinates u on D. These functions clearly reflect the

arbitrainess in the choice of coordinates of the space E. In addition,

if there are no physical jumps (i.e., SAB = 0), the admissible choice

OA = 0 anihilates the X's. In this sense, the metrical jump strengths

determined by the O's have no intrinsic physical meaning.

The fundamental system of equations (3. 9) and (3. 10) involve

the jump strengths X AB and SAB, which are tensor quantities under

admissible coordinate transformations of the four-dimensional space

E. Now consider the quantities S as defined by the equations

(3.11) S = S x x B
ap ABX Xt

Under admissible transformations of the surface coordinates u a

these quantities transform according to the indicated tensor law,

and hence constitute the components of a surface tensor. A direct

calculation based on (2. 6) and (3. 10) gives

(3.12) SAB S xAxB

where the S ap are obtained from Scg when we raise the indices

by means of the contravariant quantities a in the usual manner.

Equivalently, if we assume (3.12), equations (3. 10) are identically

satisfied. We thus see that the surface quantities Scl give a unique

determination of the components SAB over any specified surface E,

and that this determination identically satisfies equations (3. 10).

One may also verify the following result:
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AB AB c ABA(3.13) s SAB hA  = SAB~x A x a -N N)

-(S xA xBaa'S a
AB a x =S

We now consider the surface tensor whose components are

defined by the equations

A B
(3.14) a 13 =AB x a .

Let us write (3. 9) in the equivalent form

(3.15) VAB = 2 K SAB-2 (ANB) + K S) NA N B

-K S hAB

A B
and contract both sides with xa x . The result is the following

simple system of equations:

(3.16) X =K(2S -Saa)

It is easily seen, when use is made of (3. 12) and (3. 16), that the

relations (3. 15) can be written in the equivalent form

AB 2 A B 2(A NB)
(3.17) X a 2(X a )x x -2

A B 'AB
-(O-X)N N +xh

where X is defined by

(3.18) X -X az .



-12-

Conversely the equations (3.17) in which the & are derived from

(3. 16) imply the relations (3.9) on L.

Combining the considerations of the previous paragraphs, we

are thus led to the following basic result. Necessary conditions for

the existence of solutions to the Einstein field equations under as-

sumptions A 1 , A 2' A 3 are given by the tensorial surface equations

(3.19) X = K(2Sao -Sa a),

in which the surface quantities S, and Xap are determined from

the jump strengths SAB and XAB by (3.11) and (3. 14) respectively.

By this result we are permitted to base our succeeding considerations

on surface tensors and the intrinsic geometry of E.

4. DIFFERENTIAL RELATIONS

It is seen from the results of Sec. 3 that knowledge of the

surface quantities S is sufficient to determine the X ap and

hence the XAB to within the geometrical structure of E, i.e. to
A

within the functions a , NA, xA  and h on L. As yet, however,

we have not used the full content of the Einstein theory for the

relations

(4.1) TB  .0
A;B

are still at our disposal. We shall now show that the system (4. 1)

leads to a set of differential relations on L which will partially

determine the structure of S CI and the geometry of E.
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We first note that from (3.5) we have

(4.2) SB = ITBI = I TB I xC

A;a A ;a A;C a'

If we multiply (4. 2) by D a , sum on the repeated index a and

use (2. 6), we are led to the equations

(4.3) SB a x D =TB I (hc D +N N D).
A;a x, A;C

Obvious manipulations of (4. 3) then give

(4.4) ITB I =S B aa xDh B~c

A;C A;a xPCD FANY

where

(4.5) F B ITB I NC
A A;C

aare functions of the coordinates u of the hypersurface E. Now,

since (4. 1) holds on both sides of L, the tensor equations

(4.6) IB I = 0
(A;B

must hold on L. Substituting from (4.4) into (4.6), we then obtain

the differential relations

(4.7) SAB;a xB aa  . FA,

where the quantities FA, which are given by

(4.8) FA= ITcB I NC NB

A A;C B
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constitute the components of a spacial vector on the hypersurface E.

We now replace the differential relations (4. 7) by a set of

equations which involve the quantities S rather than the SAB in

accordance with the viewpoint expressed at the end of Sec. 3. For

this purpose let us multiply both sides of (4. 7) by NA to obtain

A B ap A def(4.9) N SA  x a = N A  fSAB ;a F A "

Then by covariant surface differentiation of (3. 10) and use of (2. 8)

we find that

(4.10) Sab + Y, =0.
A

On the other hand, if we contract both sides of (4. 7) with x7 , we

have

B A a A def
(4.11) SAB;a xA x a FA x =. FY

It now follows from (2. 7), (3. 10) and (4. 11) that

S (SA'BX A = xxAaa +S a axB
' a . = AB;a 0 Y AB xy)x,

=F +S aa (NB b x + N A B ) b ) F.FY SAB bao Y 0 y Y

We have-thus proved the following fundamental result. Necessary

conditions for the existence of solutions to the Einste .n field equations

under assumptions A,, A 2 , A 3 are given by the relations



-15-

(4.12) S b a + = 0,

(4.13) S;a =FO

over the surface E, where

(4.14) X = F NA , F = FxAx, F ITBcI NCNA A A A ~ A;C B*

Although we will not pursue this approach, the above results

may be used to obtain equations for the surface quantities X,,.

To see this, we first solve (3. 19) for S and thereby obtain

(4.15) 2KS ap - a .

Substitution of (4. 15) into (4. 12) and (4. 13) then leads to the desired

results, namely

(4.16) X b -2 2 +2KX =0,

(4.17) a 2 K F
'13a -X0 =2 F

where n = (1/2) b a is the mean curvature of L in E.

5. THE CONTINUATION PROBLEM

The results established in the previous section show that the

jump strengths of the momentum-energy tensor and its covariant

derivative cannot be specified in an arbitrary fashion in view of the

conditions imposed by the Einstein field equations. However, a
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certain degree of freedom is allowed. To see this, we first note

that the F depends on the S's and the geometry of E in accordance

with the equations

(5.1) F A =S'a bA + a A

This follows from (4. 12), (4. 13), (4. 14) and the fact that (N A ) and

(x) for a =f0, 1, 2 form avector basis on L. It is thus evident

that if we specify S ap in an arbitrary fashion and use our previous

results, the quantities Xap and F A are uniquely determined in a

manner consistent with the Einstein field equations.

Suppose, now, that we know the momentum-energy tensor on

one side of E and hence the limiting values of this tensor and its

divergence as E is approached from that side. The question then

arises as to the continuation of the momentum-energy tensor across

E such that the Einstein field equations will be soluable. Since we

have implicitly assumed that we do not know TAB on the other side

of E, we cannot use the fieiw equations to determine the h's and

hence the X's. We can therefore not use (3. 16) to determine the

S's since we do not know the X's. It thus follows that the only

information at our disposal is provided by the existence conditions

(5.2) S F
anda

and
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(5.3) Sa  b a + =0.

As previously noted, we could specify the S's and then

A
determine the quantities F by (5. 1). This procedure would

amount, however, to fitting the equations of motion (i. e., the

divergence of the momentum-energy tensor) on one side of E

to those on the other side by a specification of the quantities

TA; I N NB, these latter quantities being uniquely determined

by the arbitrarily choses S . Conceptually, equations of motion

are in some respects more fundamental than momentum-energy;

in addition the quantities ITB NC NB determine certain

properties of the motion normal to L; and hence are more easily

observed than the S's. Hence, having observed that such an

artificial fitting process is possible, we shall disregard it as a

general method of procedure. We are thus left with the problem

of determining the S's such that equations (5. 2) and (5. 3) are

satisfied when the functions F and x are arbitrarily pre-

assigned functions of the coordinates u .

Let us first fix our attention on the system (5. 2). These

equations may be considered as an invariant differential system

in the three-dimensional, hyperbolic-normal metric space E*

a
with coordinates u and metric differential form

(5.4) da2 a (u du
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Because of the three-dimensional character of E*, the components

K py of its curvature tensor can be expressed by

K E E (K -- 1K a )

aJpyX af3ap YX9

where E are the components of the permutation tensor of weight

af3
zero, K = Kk  and K = K a . The Einstein tensor onaj3 ajX 3

E* thus serves to determine the complete curvature tensor (K T).

If the system (5.2) is to possess a solution in E*, there must

exist a tensor Q such that

(5.5) Q ; =Fa (F a = F a pa

In the context of differential equations, the tensor Qag plays the

role of a particular solution of (5. 2). The fact that (5. 2) is a linear

differential system in Sa g allows us to write the general solution

in the form

(5.6) S ap = Q a + Zap

where Z a p is the general solution of the homogeneous system

(5.7) Zap = 0.

To some extent it would appear that we have robbed Peter to

pay Paul, for we now have to face the problem of determining the

functions Z a . Now, the system (5. 7) is formally similar to the
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equations of motion. In addition, the T's represent the momentum-

energy complex in E while the S's represent part of the jump

strength of momentum-energy and hence have energetic interpreta-

tions in L*. The formal analogy goes even deeper, however, for

the Z's also partially determine the X's and these latter quantities

represent the jumps in the second coordinate derivatives of the

geometrical quantities h AB. Also, as is well known, the intrinsic

geometry of a discontinuity hypersurface enters into the determi-

nation of classical jump strengths in an essential fashion. It is thus

natural to assume that the intrinsic geometry of E* partially

determine the S's. Now, the quantities Qap are a particular

solution of (5. 2) and hence depend on the specific physical quantities

a fF . Equations (5. 6) thus show that the dependence of S29 on the

intrinsic geometry of E* (that is, on functions of K a ) must

af3
arise through the quantities Z . We are therefore led to state the

following postulates for the integration of the system (5. 7).

P1: The quantities Z are the components of a metric tensor

differential invariant of the space L'*.

P2: This metric tensor differential invariant is of the second

order and linear in the second derivatives of the components of the

metric tensor of EL.

Postulate P2 expresses the usual restriction to second order

relations which is commonly assumed in physical theories. On the
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other hand, postulate P 1 together with (5. 6) is a fundamental

statement concerning the relation between physics and geometry.

The procedure is now straightforward. It follows from (5. 7)

that the divergence of the metric tensor differential invariant (Zap)

must vanish identically. From the known procedures for con-

structing such tensor differential invariants [101, it follows that the

most general quantity which satisfies our requirements is given by

(5.9) Z = (K -- (K + I)a),
aj3 ap 3

where e and II are constants. We shall henceforth assume that

these constants have fixed values, and in particular that e 1 0.

We have now established a consistent procedure whereby

Sts may be obtained such that we simultaneously satisfy the existence

requirements (5. 2), for (F ) an arbitrarily assigned surface vector,

and the requirements of postulates P 1 and P2' We still have to

satisfy the existence requirement (5. 3). Now, the Q's are a

particular solution of the linear system (5. 2) and hence we may write

(5.10) %4 = Wa (F)+ P '

where the W's are unique functionals of the F's such that

(5.11) XW ap(FY) = Wa X

is an identity in X and the P's are any functions of the coordinates

au for which
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(5.12) P 0 .

If we substitute (5.6) and (5. 10) into (5. 3), we obtain

(5.13) Paob., = - X -(W'g + Z'O)b a .

Since all of the terms on the right-hand side of this equation are

known, (5. 13) is seen to be an equation for the determination of

P a. Combining this with (5.12), we have four equations for the

determination of the six quantities P a" Hence the existence

requirements (5. 3) can always be satisfied; in fact, we are free to

add two more conditions in most cases.

Combining the above results, we have the following con-

clusion. Let the functions and Fa  be arbitrarily assigned

a
functions of the coordinates u . Then a consistent procedure for

the continuation of TAB across E, such that (1) Postulates PI

and P2 are satisfied and (2) the Einstein field equations are soluble,

is given by

(5.14) Sa# Qot3 + (K -. (K + II)a),

(5.15) Kabap - e(K+ II) +Qa b + 0,

(5.16) X = 2 K(eK +Qa 1 (8 (K- II) + 2Q)a

a( 23 a

(5.17) Q'O =Fa
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where @ and II are constants.

6. THE DISCONTINUITY HYPERSURFACE AS A STATIC 3-SURFACE

The problem of continuing the momentum-energy tensor across

L arose because of an assumed lack of knowledge of TAB on one

side of E. There are a number of important physical problems in

which this is the case and, in addition, the functions h AB(x K ) are

unknown-either because the Einstein field equations have not been

solved or because there is insufficient information to effect such a

solution. Fortunately, this lack of information is usually compen-

sated by known properties of the discontinuity hypersurface. We

shall now consider a particularly important example of this situation.

Let E; be a hypersurface for which the three-dimensional

metric space L* is known to be static; that is, the space 1.* admits

a one-parameter group of isometries whose trajectories form a

time-like normal congruence [11]. This means that there is a vector

field Y defined on ;* such that

ya 2 T,
(6.1) Y(a;A) = 0, Y[a Y ; = a, Ya =e

where T, is a finite-valued function of the coordinates u . From

the physical point of view, these conditions state that the infinitesi-

mal 2-spaces of observers traveling along the curves of the con-

gruence (i.e., the curves defined by du a/dp f Y a(u ) where p is

the parameter on the congruence) mesh into finite, space-like



-23-

two-surfaces called space sections. These space sections are

mapped isometrically onto each other by the group of point trans-

formations generated by the congruence. The space sections of

P ,  and hence of D, correspond to what we would normally refer

to as the two-dimensional boundary of a three-dimensional space-

like body obtained from E by an appropriate time-section. In

addition, the vector field with components YA = Y ax A  in E is

everywhere tangent to E and transports the first fundamental form

on L without change. Hence, the requirement that E* be static

is equivalent to the requirement that F be generated by the two-

dimensional boundary e of a body acted upon by a one-parameter

group of point transformations which preserves the metric structure

ong that is &is metrically stable in E.

It should be noted that the requirement that E* be static does

not necessarily imply that the Einstein-Riemann space E is static.
1

For instance, suppose that there is a C vector field XA defined

in E and such that XAx A = Y , where the bar denotes evaluationA a a

on E. We then have

Y -(XA A A RANAb

(3) A' (a) ;P ; XA(xa) A
- A B

(A;B)Xax AN a.

Hence, if F.* is static, X(A;B) can vanish for b a 0 only if

XAN A vanishes.
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In order to obtain the implications of the system (6. 1), we

define a vector U in L* by the equations

(6.2) U = e Y •

Using (6. 2) to eliminate the vector Y from the system (6. 1), we

obtain the equivalent system (see [ 12] , pp. 65 f)

(6.3) U ea a ta U a = a
a a;P 3 a a;P P

As a direct consequence of this system we have

(6.4) 2 U ] =K qs  a = 20, ;J UA] + 2 U a U A

Hence, if we contract (6.4) on the indices (a, V) and note that (6. 3)

implies

t Ua =-0 ' O U

we finally obtain the relations,

(6.5) K U =(a ' 4 )U
09 ;ay 9

The content of equations (6.5) is that the Ricci tensor of E* admits

U as a time-like eigenvector and that the corresponding eigenvalue

is the D'Alembertan of T, i.e., a&A T

We now apply these conditions to the continuation problem for
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T AB. If we contract (5.14), we have

3
(6.6) 8K =-2(S-Q + 1 01),

where we have used the obvious notation S = S a a and Q

aj3
Qa3 a . We may then solve (5.14) for Kap to obtain

(6.7) @K =S -Qa - (S -Q + PII)a .

Using (6.7) and the fact that K has to satisfy the

conditions stated by (6.5) if L* is static, we can obtain the corre-

sponding requirements which S must satisfy. These requirements

are

(6.8) (S -Qa )U pU,

for p given by

(6.9) Pa ap 1P;aA +S-Q +8I.

Equation (6.8) states that Sea -QaP admits U as a time-like

eigenvector with associated eigenvalue p; assuming that this eigen-

value is simple, we obtain a representation for S Of namely

(6.10) Sap = QaP + p Ua U 0 + aap *

The tensor with components acl which appears in (6. 10) is

arbitrary to within the requirements that it be symmetric and admit
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U as a null vector. The representation (6. 10) gives

(6.11) S=Q+P+ a

and hence (6.9) leads to the interesting result.

(6.12) 8(a T + H)+a 0.
;aA a

Since we have exact requirements of the U's, namely

equations (6. 3), we may obtain significantly more information con-

cerning the structure of S for static spaces L*. Without loss

of generality, we may assume that

(6.13) S = Ua U + Q a +Mc,

where the quantities t and M are to be determined so that U

is an eigenvector of M. Noting that (6. 3) implies

(6.14) f Ua = 0, U a  = P

the substitution of (6. 13) into the equations (5. 2) leads to

(6.15) U + t + M =0,a a;A = O

and hence

+ MA U =0.
a tr

If we use the fact that 0 = 'P and then add and subtract the
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quantity (pI,) a, the system (6.15) becomes

(6.16) (U U - 5 if6), +(MO + 'T 69) =0.
a a ,f3 aa

Thus, since

(6.17) M (67 Ua --- U 1 ),

and

(6.18) MP U = U 
a

we have the seven equations (6. 12), (6. 17) and (6. 18) for the

determination of the eight functions , , and M .

As an indication of the use of these results, consider the

particular case in which the function . is constant. The system

(6. 16) then reduces to

(6.19) (Ig + TL aa);P = 0,

and hence it is possible to consider the particular situation in which

we have

(6.20) M 'P*a .

The equations (6. 13) and (6.17) then give

(6.21) Sag = QaA + I(Ua U -N ap),

and
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(6.22) aCO N(a U-a U).

Hence, substituting (6. 22) into (6.17) we obtain the important result

(6.23) 8(a N; + 1) - 2 Q = 0.

The function NP thus satisfies a Schroedinger type equation, and

in addition, must be such that

(6.24) U' = 0.

This last requirement follows from (6.14).

Although the above example is highly artificial in the manner

in which it has been introduced here, related situations arise in

certain fundamental problems associated with relativistic cosmology

and galactic structure. These problems will be treated in suc--

ceeding papers in which equations similar to (6. 23) lead to new and

fundamental results.
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